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ABSTRACT

The power-loss method along with a
surface integral formulation has been used
to compute the attenuation constant in hollow
waveguides of arbitrary cross-section.
An E-field integral equation has Dbeen
developed for the surface electric currents

which has been transformed into a matrix
equation wusing method of moments. An
iterative technique, i.e. Muller's method

has been used to obtain the relation between
the propagation constant and frequency.
The attenuation constants have been calculated
and formulated for various waveguides and
are in good agreement with published data.

Introduction

Numerous papers are available in the
literature for the analysis of waves
propagating in hollow waveguides of arbitrary
cross-section [1-4]. Some of the papers
in this area are the works done by Swaminathan
et al [1}, Spielman and Harrington [2],
Bristol [3] and Kim et al [4]. These papers
however deal with hollow waveguides made
up of perfectly conducting walls supporting
waves at low frequencies. The work presented
here is an extension of [1] and deals with
the computation of the attenuation constant
of hollow waveguides supporting waves at
high frequencies.

At millimeter wave frequencies, the
finite conductivity of the waveguide walls
in hollow waveguides produces an attenuation
in the wave propagating in the waveguide.

To accurately characterize the hollow
waveguide at millimeter wave frequencies,
an estimate for the attenuation constant

is necessary. Since the finite conductivity
of the waveguide walls produces this
attenuation, the conductivity of the waveguide
walls has to be taken into consideration
while calculating the fields produced by
the wave propagating in the waveguide.
As long as this conductor loss 1is small,
the power-loss method can be used to compute
the attenuation constant [5]. The power-loss
method coupled with the surface integral
formulation [1,7] has been used in this
paper to analyze hollow waveguides of
arbitrary cross-section.
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Formulation

The power-loss method which has been
used in this paper for calculating the
attenuation constant assumes that the losses
are low at high frequencies. Hence it can
be safely assumed that the finite conductivity
of the waveguide walls has only a small
effect on the field configuration within
the waveguide. Due to the large conductivity
of the waveguide walls, the magnetic field
tangential to the wall depends only slightly
on the wall conductivity. Thus the tangential
magnetic field strength computed for perfectly
conducting walls remains the same as the
tangential magnetic field strength computed
for waveguides made up of walls with finite
conductivity.

Based on the power-loss method [5],
the attenuation constant is defined as

P
o = L (1
2Py
where
=1 2
P, E’Rs &c lHtanl di
1 - -k =
Py = —Z—J'J'S Re(E x H ).zds
In the above equations, Pj is the power
lost per unit 1length, Py is the power
transmitted, Hp,y 1is the magnetic field

tangential to the waveguide walls assuming
that the walls are perfectly conducting,
Rg 1is_the surface resistance of the guide
wall, E is tbg electric field inside the
waveguide and H is the complex conjugate
of the magnetic field existing inside the
waveguide. As 1is obvious from the above
equations, Pp is given by a contour integral
and Pg by a surface integral. The surface
resistance Rg at any angular frequency o
is given by

wi
R. = o]

s S (2)
where u, 1is the free space permeability
and o is the conductivity of the waveguide
walls. Equation (1) represents the formula
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for computing the attenuation constant of
a hollow waveguide with finite cross-section
and infinite along the direction of
propagation.

To calculate the fields existing in
the waveguide made up of walls with finite
conductivity a surface integral technique
has been utilized [1]. The hollow conducting
waveguides are assumed to be infinite in
the z-direction and to have arbitrary cross

section. The waveguide is completely filled
with homogeneous dielectric (air in this
case).

Using the surface equivalence principle
the waveguide walls have been replaced by
equivalent surface electric currents radiating
into free-space. Enforcing the appropriate
boundary condition, i.e., the total tangential
electric field wvanishes on the surface of
the waveguide the following E-field integral
equation has been developed:

nx E(J) =0 on C (3)

where E  is the scattered field produced
by the electric current J and n is the unit
vector normal to the surface of the waveguide.
Since TM, and_TE, modes can propagate in
the waveguide, E represents the axial electric
field for TM, modes and represents the
transverse electric field for TE, modes.

Method of moments ([8]) with pulse
expansion and point matching testing procedure
has been wused to transform the integral
equation into a matrix one. At a fixed
wavenumber (B) and angular frequency (w)
the integral equation reduces to the form

[z]1[1] = [O] (4)

where [Z] is the impedance matrix and [I]

is a vector containing the expansion
coefficients.

The next step in the calculation of
o is to obtain a relation between B

and w using equation (4). TFor a non-trivial
solution to exist for the vector [I], the
matrix [2Z] has to be singular [1]. The
matrix equation can be rewritten in a simpler
form for computational purposes as

[Z]{1} = ApinlI] (5)
where Agpin 18 the minimum eigenvalue of
the matrix [Z] and [I] is the corresponding
eigenvector. Assuming B is fixed, then
the frequency w at which Apipn is the smallest
gives a relation between B8 and w.
The Muller's method has been used to find
w at which Apip goes to zero {1,7].

Once the B-w relation 1is known, the

fields inside and on the surface of the
waveguide can be calculated using the
eigenvector [I].
Results

The results obtained using the power-loss
method along with a surface integral

formulation have been compared with analytical
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results given in [5] for the waveguide shown

in Fig.l. The attenuation constant computed
for the first TM, and first TE, mode
propagating in the waveguide are shown in
Fig. 2. The cutoff wavelength Xc for

T, mode is 1.789cm and for the TE, mode
is  4.0cm. The results obtained compare
very well with the analytical results.

An 1L Shaped Waveguide is shown in Fig.
3. The attenuation for the first TM, mode
and the first TE, mode are shown in Fig.
4. The cutoff wavelength Ac for the
T, mode is 1.286cm and for the TE, mode
is 3.321cm.

The surface integral technique along

with the power-loss method is a very powerful
method for computing the attenuation constant
of waveguides with arbitrary cross-sections.
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Fig. 1: Rectangular waveguide
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Fig. 2: Attenuation constant for the vectangular waveguide.
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Fig. 4:

Attenuation constant for the L-shaped waveguide
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