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ABSTRACT

The power-loss method along with a

surface integral formulation has been used

to compute the attenuation constant in hollow

waveguides of arbitrary cross-section.

An E- field integral equation has been

developed for the surface electric currents

which has been transformed into a matrix

equation using method of moments. An

iterative technique, i.e. Muller’s method

has been used to obtain the relation between

the propagation constant and frequency.

The attenuation constants have been calculated

and formulated for various waveguides and

are in good agreement with published data.

Introduction

Numerous papers are available in the

literature for the analysis of waves

propagating in hollow waveguides of arbitrary

cross-section [1-4]. Some of the papers

in this area are the works done by Swaminathan

et al [11, Spielman and Barrington [2],

Bristol [3] and Kim et al [4]. These papers

however deal with hollow waveguides made

up of perfectly conducting walls supporting
waves at low frequencies. The work presented

here is an extension of [1] and deals with

the computation of the attenuation constant

of hollow waveguides supporting waves at

high frequencies.

At millimeter wave frequencies, the

finite conductivity of the waveguide walls

in hollow waveguides produces an attenuation

in the wave propagating in the waveguide.

To accurately characterize the hollow

waveguide at millimeter wave frequencies,

an estimate for the attenuation constant

is necessary. Since the finite conductivity

of the waveguide walls produces this

attenuation, the conductivity of the waveguide
walls has to be taken into consideration

while calculating the fields produced by

the wave propagating in the waveguide.

As long as this conductor loss is small,

the power-loss method can be used to compute

the attenuation constant [51. The power-loss

method coupled with the surface integral
formulation [1,7] has been used in this

paper to analyze hollow waveguides of

arbitrary cross-section.

Formulation

The power-loss method which has been
used in this paper for calculating the
attenuation constant assumes that the losses

are low at high frequencies. Hence it can
be safely assumed that the finite conductivity

of the waveguide walls has only a smaII
effect on the field configuration within
the waveguide. Due to the large conductivity
of the waveguide walls, the magnetic field
tangential to the wall depends only slightly

on the wall conductivity. Thus the tangential
magnetic field strength computed for perfectly

conducting walls remains the same as the
tangential magnetic field strength computed
for waveguides made up of wal~s with finite

conductivity.

Based on the power-loss method [5],
the attenuation constant is defined as

P~~._
2pT

(1)

where

In the above equations, pL is the power
lost per unit length, PT is the power
transmitted, Htan is the magnetic field
tangential to the waveguide walls assuming
that the walls are perfectly conducting,
Rs is the surface resistance of the guide
wall, E is tll~ electric field inside the
waveguide and H is the complex conjugate
of the magnetic field existing inside the
waveguide. As is obvious from the above
equations, PL is given by a contour integral

and PT by a surface integral. The surface
resistance Rs at any angular frequency w
is given by

(2)

where PO is the free space permeability
and u is the conductivity of the waveguide
walls. Equation (1) represente the formula
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for computing the attenuation constant of

a hollow waveguide with finite cross-section

and infinite along the direction of

propagation.

To calculate the fields existing in

the waveguide made up of walls with finite
conductivity a surface integral technique

has been utilized [1]. The hollow conducting

waveguides are aasumed to be infinite in

the z-direction and to have arbitrary cross

section. The waveguide is completely filled

with homogeneous dielectric (air in this

case).

Using the surface equivalence principle

the waveguide walls have been replaced by

equivalent surface electric currents radiating

into free-space. Enforcing the appropriate

boundary condition, i.e., the total tangential

electric field vanishes on the surface of

the waveguide the following E-field integral

equation has been developed:

(3)

where ~ is the scattered -field produced

by the electric current ; and n is the unit

vector normal to the surface of the waveguide.

Since TMz and TEZ modes can propagate in

the waveguide, ~ represents the axial electric

field for TMz modes and represents the

transverse electric field for TEZ modes.

Method of momenta ([8]) with pulse

expansion and point matching testing procedure

has been used to transform the integral

equation into a matrix one. At a fixed

wavenumber (6) and angular frequency (u)
the integral equation reduces to the form

[2][1] = [0] (4)

where [z] is the impedance matrix and [I]

is a vector containing the expansion

coefficients .

The next step in the calculation of

a is to obtain a relation between 6

and w using equation (4). For a non-trivial

solution to exist for the vector [I], the

matrix [z] has to be singular [1]. The

matrix equation can be rewritten in a simpler
form for computational purposes as

[z][II = Xmin[I] (5)

where Amin is the minimum eigenvalue of

the matrix [z] and [I] is the corresponding

eigenvector. Assuming ~ is fixed, then

the frequency m at which Amin is the smallest
gives a relation between B and u.
The Muller’s method has been used to find
w at which Amin goes to zero [1,7].

Once the !3-w relation is known, the

fields inside and on the surface of the

waveguide can be calculated using the

eigenvector [1].

Results

The results obtained using the power-loss

method along with a surface integral

formulation have been compared with analytical

results given in [5] for the waveguide shown

in Fig.1. The attenuation constant computed

for the first TMZ and first TEZ mode

propagating in the waveguide are shown in

Fig. 2. The cutoff wavelength Xc for

TMZ mode is 1.789cm and for the TEZ mode

is 4.Ocm. The results obtained compare

very well with the analytical results.

An 1, Shaped Waveguide is shown in Fig.

3. The attenuation for the first TMZ mode

and the first TEZ mode are shown in Fig.

4. The cutoff wavelength kc for the

TMz mode is 1.286cm and for the TEZ mode
is 3.321cm.

The surface integral technique along

with the power-loss method is a very powerful

method for computing the attenuation constant

of waveguides with arbitrary cross-sections.
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Fig. 1: Rectangular waveguide
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Fig. 2: Attenuation constant for the rectangular waveguide.
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Fig. 3: L-shaped waveguide
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Fig. 4: Attenuation constant for the L-shaped waveguide
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